Mammalian postmitotic nuclei reenter the cell cycle after serum stimulation in newt/mouse hybrid myotubes

نویسندگان

  • Cristiana P. Velloso
  • András Simon
  • Jeremy P. Brockes
چکیده

Cell cycle reentry and dedifferentiation of postmitotic cells are important aspects of the ability of an adult newt and other urodele amphibians to regenerate various tissues and appendages [1]. In contrast to their mammalian counterparts, newt A1 myotubes are able to reenter S phase after serum stimulation of a pathway leading to phosphorylation of the retinoblastoma protein, pRb [2]. The activity in serum is not due to mitogenic growth factors but is generated indirectly by the activation of thrombin and subsequent proteolysis [3]. In this paper we describe the formation of interspecies hybrid (heterokaryon) myotubes by the fusion of mouse C2C12 [4] and newt A1 [5, 6] myogenic cells. The C2C12 nuclei reenter the cell cycle upon serum stimulation of the hybrids, while C2C12 homokaryon myotubes remain arrested under these conditions. These findings indicate that the postmitotic arrest of the mouse nuclei is undermined by the pathway activated in the newt cytoplasm. The hybrid myotubes provide a new model for the manipulation of the postmitotic arrest in both mammalian and newt differentiated cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newt Myotubes Reenter the Cell Cycle by Phosphorylation of the Retinoblastoma Protein

Withdrawal from the cell cycle is an essential aspect of vertebrate muscle differentiation and requires the retinoblastoma (Rb) protein that inhibits expression of genes needed for cell cycle entry. It was shown recently that cultured myotubes derived from the Rb-/- mouse reenter the cell cycle after serum stimulation (Schneider, J.W., W. Gu, L. Zhu, V. Mahdavi, and B. Nadal-Ginard. 1994. Scien...

متن کامل

Thrombin regulates S-phase re-entry by cultured newt myotubes

BACKGROUND Adult urodele amphibians such as the newt have remarkable regenerative ability, and a critical aspect of this is the ability of differentiated cells to re-enter the cell cycle and lose their differentiated characteristics. Unlike mammalian myotubes, cultured newt myotubes are able to enter and traverse S phase, following serum stimulation, by a pathway leading to phosphorylation of t...

متن کامل

A mammalian myocardial cell-free system to study cell cycle reentry in terminally differentiated cardiomyocytes.

Cardiomyocytes withdraw from the cell cycle in the early neonatal period, rendering the adult heart incapable to regenerate after injury. In the present study, we report the establishment of a cell-free system to investigate the control of cell cycle reentry in mammalian ventricular cardiomyocyte nuclei and to specifically address the question of whether nuclei from terminally differentiated ca...

متن کامل

DNA Replication Is Intrinsically Hindered in Terminally Differentiated Myotubes

BACKGROUND Terminally differentiated (TD) cells permanently exit the mitotic cycle while acquiring specialized characteristics. Although TD cells can be forced to reenter the cell cycle by different means, they cannot be made to stably proliferate, as attempts to induce their replication constantly result in cell death or indefinite growth arrest. There is currently no biological explanation fo...

متن کامل

Reversal of myogenic terminal differentiation by SV40 large T antigen results in mitosis and apoptosis.

Terminally differentiated skeletal muscle myotubes are arrested in the G0 phase of the cell cycle, and this arrest is not reversed by stimulation with serum or growth factors. The myotubes have been shown to be refractory to apoptosis even under low serum conditions. When the SV40 large T antigen is induced in the C2SVTts11 myotubes, which stably harbor the T antigen gene linked to an inducible...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2001